
Introduction to DBT – What & Why?
بالعربي

Ansam Yousry

Key Learning Outcomes

Who Should Use DBT?

What is DBT?
And Why Should You Care

ETL ELT
Extract >> Transform>>Load Extract >>Load>>Transform

The Modern Data Stack Diagram

Challenges in Traditional Data
Transformation

What is dbt?
dbt (data build tool) is an open source tool that allows data analysts and engineers to
transform, test, and document data in the cloud data warehouse using SQL.

The Real Power of DBT

Modularity: No More Copy-Pasting SQL

Before DBT: You manually write and maintain long SQL queries every time
you need a new report.

With DBT: You break down SQL logic into reusable models (SQL files).
Example: Instead of writing the same JOIN logic in 5 reports, DBT lets you
define it once in a model and reuse it.

Jinja

Using Jinja turns your dbt project into a programming environment for SQL,
giving you the ability to do things that aren't normally possible in SQL.

Use control structures (e.g. if statements and for loops) in SQL

Use environment variables in your dbt project for production deployments

https://docs.getdbt.com/reference/dbt-jinja-functions/env_var

{% set payment_methods = ["bank_transfer", "credit_card", "gift_card"] %}

select
 order_id,
 {% for payment_method in payment_methods %}
 sum(case when payment_method = '{{payment_method}}' then amount end) as {{payment_method}}_amount,
 {% endfor %}
 sum(amount) as total_amount
from app_data.payments
group by 1

Jinja

select
 order_id,
 sum(case when payment_method = 'bank_transfer' then amount end) as bank_transfer_amount,
 sum(case when payment_method = 'credit_card' then amount end) as credit_card_amount,
 sum(case when payment_method = 'gift_card' then amount end) as gift_card_amount,
 sum(amount) as total_amount
from app_data.payments
group by 1

This query will get compiled to:

Macros

Macros in Jinja are pieces of code that can be reused multiple times – they
are analogous to "functions" in other programming languages, and are
extremely useful if you find yourself repeating code across multiple models.
Macros are defined in .sql files, typically in your macros directory (docs).

https://docs.getdbt.com/docs/build/jinja-macros
https://docs.getdbt.com/reference/project-configs/macro-paths

{% macro get_payment_amount(payment_method) %}
 SUM(CASE WHEN payment_method = '{{ payment_method }}' THEN amount END) AS {{ payment_method }}_amount
{% endmacro %}

Macros

SELECT
 order_id,
 {{ get_payment_amount('bank_transfer') }},
 {{ get_payment_amount('credit_card') }},
 {{ get_payment_amount('gift_card') }},
 SUM(amount) AS total_amount
FROM app_data.payments
GROUP BY 1;

This query will get compiled to:

Automated Data Quality Testing

Before DBT: You only notice broken data when dashboards show incorrect
numbers.
With DBT: You can test your data automatically!

Version Control & Collaboration (Git)

Before DBT:
SQL files are scattered across different team members' folders.
No easy way to track changes or revert mistakes.

With DBT:
Every SQL change is version-controlled with Git.
Teams can collaborate without overwriting each other’s work.

Build Data Lineage & Documentation

Before DBT: No clear way to see how data flows from raw to final tables.

With DBT: You get automatic lineage graphs!
Example: You can visually track how monthly_revenue is calculated from
raw orders → staging → transformed tables.

Performance Optimization

Before DBT:
Queries can become slow as data grows.

With DBT:
DBT lets you materialize tables as views, tables, or incremental models.
Example: Instead of reprocessing all data, DBT can update only new
rows (incremental models), speeding up transformations.

What are the benefits of DBT?

Traditional Data Transformation vs. dbt

dbt core dbt cloud

dbt products

Difference Between dbt Cloud and dbt Core

Dbt Cloud Architecture

