Introduction to DBT - What & Why?
STt

X dbt

Key Learning Outcomes

3-Writing Models with 5-Creating Data
1-Introduction to DBT SQL Documentation
Understanding DBT's role in Building SQL models for data Documenting models and
data transformation transformations creating data lineage

7-Deployment and
Project Optimization

Deploying DBT in production
and optimizing systems

2-Setting Up the 4-Data Testing

Environment Adding tests to ensure data

Conﬁguring DBT on platforms transformation correctness

like BigQuery and Redshift

6-Version Control and
Management

Integrating DBT with Git for
version control

Who Should Use DBT?

~. ,—[% Data Analysts J
Automate Transformations - - : r ~ : - - Transform Raw Data
Organize Transformation Layer --' '~ ‘ Dl L '~ Structured Data Formats
DAT

.1 DBT [-.
Bl Developers ”'_1 - ~
[ers R } ___

Reporting Tools - -

- High-Quality Data

-—-ﬂ-

Dashboard Preparation - - ~- Consistent Data

[@N Data Architects J

- Scalable Models

~- Modular Architecture

- = -

What is DBT?
And Why Should You Care

& N7

ETL ELT

Extract >> Transform>>Load Extract >>Load>>Transform

The Modern Data Stack Diagram

SIS

Airbyte i:":? .
X dbt

Data Sources

Data I + +-I:|-
Ingestion Data L
Warehouse
Initial data
collection Process of
from various moving data Centralized
origins into the storage of Data
system processed processing and Analyz2ing and
data transformation visvalizing

using DBT data for
insights

Challenges in Traditional Data

Difficulty in tracking
changes and
maintaining
consistency in SQL
scripts.

Scaling

Difficulties

Challenges in
coordinating large
teams for data
transformations.

Transformation

TN

—

Time-consuming and
error-prone testing
processes without
avtomation.

Necéésitg to learn
new languages like
Python for data tasks.

What is dbt?

e dbt (data build tool) is an open source tool that allows data analysts and engineers to
transform, test, and document data in the cloud data warehouse using SQL.

)
3 [ont e

Cleaned &
Row Data DBT Models Transformed
Dato
Initial unprocessed Models created for Final refined data
data state dato ready for use

transformation

The Real Power of DBT

Modularity: No More Copy-Pasting SQL

e Before DBT: You manually write and maintain long SQL queries every time
you need a new report.

e With DBT: You break down SQL logic into reusable models (SQL files).
e Example: Instead of writing the same JOIN logic in b reports, DBT lets you
define it once in a model and reuse it.

Jinja
e Using Jinja turns your dbt project into a programming environment for SQL,
giving you the ability to do things that aren't normally possible in SQL.
e Use control structures (e.g. if statements and for loops) in SQL

e Use environment variables in your dbt project for production deployments

https://docs.getdbt.com/reference/dbt-jinja-functions/env_var

{% set payment_methods = ["bank_transfer", "credit_card", "gift_card"] %}

select
order_id,
{% for payment_method in payment_methods %}
sum(case when payment_method = '{{payment_method}} then amount end) as {{payment_method}}_amount,
{% endfor %}
sum(amount) as total_amount
from app_data.payments
group by 1

This query will get compiled to:

select
order_id,
sum(case when payment_method = 'bank_transfer' then amount end) as bank_transfer_amount,
sum(case when payment_method = 'credit_card' then amount end) as credit_card_amount,
sum(case when payment_method = 'gift_card' then amount end) as gift_card_amount,
sum(amount) as total_amount

from app_data.payments

group by 1

Macros

e Macros in Jinja are pieces of code that can be reused multiple times - they
are analogous to "functions" in other programming languages, and are
extremely useful if you find yourself repeating code across multiple models.
Macros are defined in .sqgl files, typically in your macros directory (docs).

https://docs.getdbt.com/docs/build/jinja-macros
https://docs.getdbt.com/reference/project-configs/macro-paths

Macros

{% macro get_payment_amount(payment_method) %}
SUM(CASE WHEN payment_method = '{{ payment_method }}' THEN amount END) AS {{ payment_method }}_amount

{% endmacro %}

This query will get compiled to:

SELECT
order_id,
{{ get_payment_amount('bank_transfer') }},
{{ get_payment_amount('credit_card') }},
{{ get_payment_amount('gift_card') }},

SUM(amount) AS total_amount
FROM app_data.payments
GROUP BY 1;

Automated Data Quality Testing

e Before DBT: You only notice broken data when dashboards show incorrect
numbers.
e With DBT: You can test your data automatically!

yami

mode ls:
— name: stg_orders
rtests:
— unique: order_1id

- not_null: order_aid

Version Control & Collaboration (Git)

e Before DBT:
o SQL files are scattered across different team members' folders.
o No easy way to track changes or revert mistakes.
e With DBT:
o Every SQL change is version-controlled with Git.
o Teams can collaborate without overwriting each other’s work.

Build Data Lineage & Documentation

e Before DBT: No clear way to see how data flows from raw to final tables.

e With DBT: You get automatic lineage graphs!
e Example: You can visually track how monthly_revenue is calculated from

raw orders - staging - transformed tables.

Performance Optimization

e Before DBT.:
o Queries can become slow as data grows.

e With DBT:
o DBT lets you materialize tables as views, tables, or incremental models.
o Example: Instead of reprocessing all data, DBT can update only new
rows (incremental models), speeding up transformations.

What are the benefits of DBT?

Version Control

DBT integrates with Git
for effective version
control and
collaboration.

Automated
Modular & Testin
Scalable g
. Automated data testing
Its modular design ensures accuracy and
allows for scalability as reliability in data
data needs grow. pipelines.
Documentation &
! Lineage
SQL-Based NU .
Comprehensive
DBT's SQL-based AN [A r/ documentation and
approach makes it easy e 3 lineage tracking

to learn and use for data (/1 C] enhance data
professionals. / 0——n5 \M governance.

DBT Advantages

Traditional Data Transformation vs. dbt

Traditional Data
dbt .
Transformation
% Version A No version
control control
0 Auvtomated Manual
e,@ testing testing
N\ A
Documentation | Poor X
documentation
— " Scalability
— Scalability ¢DI]¢ <<
& Modularity E Monolithic
structure

dbt products

SV

dbt core dbt cloud
A=

Difference Between dbt Cloud and dbt Core

Feature DBT Cloud DBT Core

Interface Web Ul CLI-based

Execution Managed in the cloud Runs locally or on a server

Scheduling Built-in scheduler External schedulers needed (Airflow, Prefect, Cron)
Authentication SSO Integration Handled manually

Version Control Integrated with Git Git-based but manually configured

Cost Paid service Free & open-source

Dbt Cloud Architecture

X dbt

- ~
Cloud IDE
application Services A
Public Internet
o ~
Scheduler € P/ \ N <
Service > (1] Data
A\ / 4 Warehouses
\ y,
Postgres
Semantic
Layer
\ J

Q git

~> Share

Q Subscribed \/

DevBlogit

Home

Latest articles /* widget: Post Blocks */ @keyframes
uc_post blocks elementor d8668db3 item-
animation{0%{filter: blur{4px); opacity: 0;}100%...

« ~J L, Devblogit
nevﬂlﬂg“ Share your videos with friends, family, and the world

